ZoomFloppy Tape Support

Arnd Menge has delivered the first set of patches allowing ZoomFloppy to interface with 1530/1531 tape hardware.  In the coming days, Arnd hopes to complete development of this new feature, and I am looking into creating a daughtercard that will attach to the ZoomFloppy via the X5 expansion connector.

Obviously, such support is alpha at present, but the device is proving very versatile with the recent improvements!

Arnd Menge

uIEC/SD 3.2 vs uIEC/SD 3.1

uIEC/SD 3.2 versus 3.1
uIEC/SD 3.2 versus 3.1

Even though there’s not much to tell, some folks asked about the differences in the new v3.2 uIEC/SD design.  A picture is worth its weight in gold here, but I’ll also point out some less apparent details.

  • Due to the new SD socket footprint, I was able to push the edge of the socket further from the edge of the board.  This should help with implementations sitting behind thick plastic cases.
  • Two small half moons (on the top left and bottom right) should allow the unit to be mounted in a Hammond 1551RBK enclosure.
  • Although not populated on the PCB, there are pads for a Dallas DS1307 (or compatible) RTC with battery backup.  The battery pins are shown on the right of the new PCB, while you can make out the watch crystal footprint below them on the right side.
  • The LEDs have been pushed further outside the PCB.  Truly, the assembly house went overboard on the first batch, but they should stick out to the edge of the SD socket.

Nothing else, I am afraid.  I tried to add device jumpers to the design, but ran out of space and time to route the pads.  The rest remains the sames, including:

  • Pinout.  v3.2 shares the same pinout as v3.1 and v3.0
  • Mounting location.  The mounting holes are in exactly the same place.  Though the SD socket has mover 1/8″ further out, the PCB will fit in exactly the same place as previous designs.
  • Same uC.  The Atmel ATMEGA1281 is still in use, as is the 74LVC06  serial bus driver

 

How Low Can You Go?

Advanced Interconnect Header
Advanced Interconnect Header

Designing “piggyback” PCBs can prove challenging at times.  For example, extending a piggyback PCB outside of the original ICs footprint must contend with physical obstructions (connectors beside the IC, passives like capacitors or resistors sticking out of the original PCB, etc.).  Luckily, it’s often easy to print out a 1:1 version of the design on paper, cut to dimensions, and test fit onto the original board.  Often, obstructions can be mitigated by switching to SMT components and using a smaller footprint or changing the PCB outline to for around obstacles.

However, less easy to design around are height issues. The best approach involves replacing the original ICs function entirely.  Replacement solutions like ROM-el rise little further than the original IC they replace.  If the original IC is still needed, but a pass-through of all signals to the original IC is acceptable, the design can utilize a socket both to contain the original IC, and let the pins from the socket function as the header for the piggyback PCB connector to the original socket.  This solution typically rises a bit further, but rarely far enough to cause issues.

Designing a piggyback PCB that requires the original IC and must reroute some of the original IC signals forms the worst case.  If the original IC height is defined as ‘X’, and we ignore the .8mm to 1.6mm of the PCB, this design still requires a header (‘X’ height), a socket for the original IC (‘X’ height), and the original IC (‘X’ height).

Mind you, most 70’s and 80’s systems designs left lots of room between board or above the original PCB.  Thus, 3X height, while potentially looking out of place, will often continue to work.  However, as designs became more compact, such luxuries are often unavailable.

The Commodore 1541II disk drive PCB is one such example of the last case.  Commodore, in order to reduce overall drive height as much as possible, left little room between the control PCB and the drive mechanism mounted immediately above it.  Designing a piggyback board for use in this device is particularly challenging, as there is simply no way to add any height; the drive mechanism won’t rotate the disk if the piggyback board touches it, and you simply cannot relocate the mechanism.

Months ago, I pulled a CMD JiffyDOS ROM out of a 1541II, and was surprised to see an unusual header being used to minimize height.  Instead of a normal header, which is simply a batch of double ended pins stuck in a plastic socket, this header used a thin flexible “film” to hold the pins in place, adding no height at all.  I had no idea of the source, but a quick request on the CBM Hackers mailing list yielded a source.  Vanessa Ezekowitz tracked down the manufacturer (Advanced Interconnections) and the product (Peel-a-Way Removable Carriers).

Of course, this doesn’t solve every problem, but it does offer new hope for designs in height constrained locations.  The solution is not cheap (10X the price of a normal IC header), but it can turn an impossible design into a possible product.

 

uIEC/SD v3.2 Shipping

uIEC/SD Daughtercard v3
uIEC/SD Daughtercard v3

As of tonight, the last of the uIEC/SD pre-orders have finally shipped.  In fact, for the first time since early May, we are caught up on order fulfillment.  Now, I can relate some features of the new uIEC/SD daughtercard option:

  • Two (2) IEC connectors.  No need to ensure the uIEC is the last item on the bus
  • 3 uIEC/SD connectors (one populated by default).  One is designed to point backwards from the daughtercard (for a horizontal setup), while the other two are vertical.  (This means users can reposition the unit for ease of use, or can utilize more than 1 uIEC on the same daughtercard)
  • Integrated power plug.  No more pigtail wire to break.
  • RESET button on board.
  • Selectable uIEC/SD RESET operation.  Removing the on-board jumper will prevent computer resets from affecting uIEC/SD unit.

    uIEC/SD Daughtercard v3 (side view)
    uIEC/SD Daughtercard v3 (side view)

 

Of course, the original Daughtercard remains available for those who prefer a minimal approach.  The original daughtercard works best for C128D/DCR users, while the new unit works best for other machines.

The new unit will be available as an option in the store shortly.

 

Upcoming ECCC ’11 Show

RETRO Innovations will be attending the upcoming ECCC/VCFMW Show September 24/25 in Lombard, IL.  Details are below:

Vintage Computer Festival Midwest 6.0 / Emergency Chicagoland
Commodore Convention 2011
http://vcfmw.org / http://starbase.globalpc.net/eccc
September 24-25, 2011, Lombard, IL

WHAT: VCFMW is a free and open exposition of classic computing
hardware, software and memorabilia. ECCC is the world's top September
destination for Commodore enjoyment. Two great shows, one great
non-price!

WHEN: 8AM Saturday, September 24, 2011 to 4PM Sunday, September 25,
2011 (display area will close 11PM Saturday to 10AM Sunday)

WHERE: Heron Point Building, next to Fairfield Inn and Suites (Marriott)
http://marriott.com/property/propertypage/CHIFS
665 West North Ave
Lombard, Illinois 60148 USA
1-630-629-1500

Mention "Fall Commodore Expo" for special $69/night room rate!

# Join the VCF-MW Facebook group!
http://www.facebook.com/#!/event.php?eid=198133433540110
# Follow us on Twitter http://twitter.com/vcfmidwest
# Join us on IRC at freenode #vcfmw

# Visit for extra ECCC Facebookery.
http://www.facebook.com/event.php?eid=199033060117396

Copyright © 1997-2011 Vintage Computer Festival http://vintage.org
Vintage Computer Festival and VCF are trademarks of VintageTech
http://www.vintagetech.com

Finally! uIEC/SD Units Shipping from Manufacturer

uIEC/SD 3.2 Production Unit
uIEC/SD 3.2 Production Unit

After what seems like an eternity, the first 50 uIEC/SD units have been shipped from the assembly house.  Exhibiting the longest design/manufacturing cycle I’ve ever witnessed, they’ve been unavailable since late April, 2011.

For those new to the saga, the normal stock re-order process in early May ran aground when the specified SD socket was unavailable for purchase.  Though the socket had been discontinued (and the manufacturer did send me an email), the sales distributor showed (and allowed me to order) a last batch of units.  I had no idea the distributor would be overcommitted and call notifying me they could not fulfill the order.  That call set off a multi-week effort to find alternate stock, which then morphed into finding another option that fit the footprint, and finally resulted in redesigning the board to accommodate a new SD socket option.  That delay ate up the entire month of May and part of June.

Things started getting interesting in late June, as I awaited new stock.  First, the date slipped, which was not altogether surprising (it was but an estimate at best).  Then, the assembly house sent word the DIN6 IEC connectors would not fit in the daughtercard footprint.  This was not a showstopper, as I had sourced connectors for another project that would work.  A while later, the assembly house IMed on a Thursday night that the new SD connector would not fit the design.  I double-checked the PCB design and measured the sample units.  Everything looked correct.  I asked for a picture to view the issue. They promised one later that day.  But, they are a half day ahead.  I received it the end of their day, Friday morning here in the US.  By that time, they had gone home for the weekend.  Looking at the picture, I immediately solved the problem.  They were trying to solder the old SD socket onto the new PCB design.  Still, that wasted time.

Luckily, after nearly suffering heart stoppage over the SD socket issue, the rest of assembly went relatively smoothly.  Complicating the shipment: most pre-orders specified a daughtercard option.  Thus, both items required assembly before any orders could be filled.  As well, I produced the new daughtercard design in this order.

Now, to see if my design skills are good enough to overcome the lack of prototype assembly and testing.

ZoomFloppy SRQ Nibbling Support

During ZoomFloppy development, Nate Lawson tested and found that the 1571 drive, with it’s faster clock speed and hardware shift register data transfer support, could potentially support serial data nibbling.  Current nibbling options require a cumbersome and difficult-to-install parallel cable.  As attention was placed elsewhere, the idea was shelved pending initial implementation code.

A while back, Arnd Menge submitted a patch to enable serial nibbling using the ZoomFloppy hardware and the 1571 SRQ line.  Continued testing and refinement of the patch goes well.  Thanks go out to Arnd for the patch and bug fixes, and to Nate Lawson for debugging this new functionality.  Currently, only reads are supported, but write support will be added once the basic concept and initial implementation is proven.

When complete and added to the base firmware and OpenCBM libraries and tools, C128DCR 1571CR owners, who previously were unable to utilize their drive for data nibbling (lack of parallel port option) can utilize this solution to quickly read data from the 1571 drive unit.

We’ll continue to monitor the progress of this new feature.  Though the solution is close at hand, software support for this new feature might take longer.

 

New Shipping Software

Since RETRO Innovations opened for business, I’vetaken advantage of solutions like USPS.COM and the USPS integration in Paypal to print shipping labels in the office.  When shipping volume rarely hit 5 parcels a week, typing addresses into the USPS.COM website, and filling out customs information on either solution was bearable, though annoying.  However, as sales volumes increased, I found I dreaded fulfilling non-Paypal and foreign orders.  The former has no integration with the post office, so addresses required manual entry.  The latter required a customs form, which was a manual process as well.

This week, after filling 30 or so overseas orders, I’d finally had enough.  It was time to find a better solution.  Luckily, my shopping cart vendor (BigCommerce) now offers integration with a Shipping Manager called ShipWorks.  So, I downloaded a trial and started evaluating the solution.  Color me impressed.  Arguably, I did not do a comprehensive vendor selection, but I’m not sure I need to evaluate any other solutions.  ShipWorks offers Fedex, UPS, and USPS shipping, pulls shipping addresses from the actual order (no more wrong shipments because the customer used Paypal and has an outdated address in that system while putting the current address in the order), updates the order when shipping labales are printed, tracks the shipments (if possible), offers all of the post office postage types (first class, parcel post, etc), and automatically handles customs forms.   The list of features goes on far beyond those, but the above are my pain points.

After playing with the solution for a few days, I determined that it will print the shipping label from one printer tray (which holds self stick labels) and can also print a packing slip from another tray (which contains regular paper).  This may alleviate shipping delays to Germany, as I previously did not send invoices.

In an instant, order fulfillment went from dread to delight.  Stuffing orders used to take the least time, now it far exceeds postage printing duration.  I’m not overly wild about the tiered pricing, nor that the solution requires an additional monthly subscription to Endicia or Stamps.com for postage purchase.  However, in light of the time saved, it’s a cost I can bear far easier than the time wasted in manually handling postage labels.

I hope customers see the value as well, both in more professional presentation (invoices, logos, etc.), and swifter delivery.  If I can determine how, I plan to enable multiple shipping providers.  Some overseas customers lament the slow pace of USPS Priority Mail and encourage offering a more expensive, but more timely shipping service.  I hope to provide that soon.

Continued uIEC/SD Delays

uIEC/SD 3.2 PCB Design
uIEC/SD 3.2 PCB Design

My plan to ship uIEC/SD units by end of June was evidently overly optimistic.  It took longer than expected to modify the uIEC/SD PCB design, and the design had to be checked more thoroughly since I will not have time to assemble and test a sample before ordering the SMT stencil (a metal “mask” laid over the PCB that is used to force solder paste to only deposit on the exposed PCB pads)  and a production PCB run.  Thus, I am crossing my fingers that the redesign is correct.  The new design looks very similar to the older, though I have designed the PCB to fit a small Hammond 1551 enclosure (the 2 half-present holes on the corners of the board).

At this point, I’ve moved the expected ship date to July 12, and alerted customers about the delay.